原創(chuàng)不易,,若轉(zhuǎn)載此文章,,請(qǐng)聯(lián)系工作人員并在轉(zhuǎn)載文章中備注信息來源,否則按侵權(quán)處理!
過電位,,亦稱超電勢(shì),、過電勢(shì),是指在電催化或光電催化反應(yīng)過程中,,達(dá)到一定電流密度時(shí)所需實(shí)際電壓超過理論電壓的部分,。
理想的狀態(tài)下,電催化或光電催化反應(yīng)所需的運(yùn)行電位即為平衡狀態(tài)下的電位,。然而,,實(shí)際反應(yīng)中的工作電位往往需要克服動(dòng)力學(xué)過程的阻礙從而表現(xiàn)出高于平衡電位的數(shù)值,超出理論值的電壓稱為過電位,,主要用來克服活化電阻和電荷轉(zhuǎn)移電阻等其他電阻[1],。
簡(jiǎn)單地理解,,過電位是指電流密度達(dá)到指定水平時(shí)的實(shí)際電位與平衡電位的差值,它直接地反應(yīng)電催化或光電催化反應(yīng)的催化活性,。
根據(jù)能斯特方程[2],實(shí)際工作電位E可以表示為:
E:實(shí)際反應(yīng)的工作電位
E0:反應(yīng)的標(biāo)準(zhǔn)電位
T:絕對(duì)零度(273.15℃)
R:理想氣體常數(shù)
F:法拉第常數(shù)(96485 C/mol)
N:反應(yīng)中轉(zhuǎn)移的電子數(shù)
C0:氧化產(chǎn)物的濃度
CR:還原產(chǎn)物的濃度
過電位基本公式可表示為:
:過電位
:實(shí)際電位
:理論電位
理論上來講,,過電位越接近于0 V,,催化劑的性能越好,達(dá)到相對(duì)電流密度所需的實(shí)際電壓越低,,耗能相對(duì)越小,,催化活性越高[3]。
需要注意的是,,在比較不同催化劑的過電位時(shí),,一定要指明具體的電流密度,否則比較出的結(jié)果沒有太大意義,。
在具體指明的電流密度下,,催化劑的過電位越低,表明其對(duì)目標(biāo)反應(yīng)的催化能力越強(qiáng),,通常選擇電流密度為10 mA/cm-2時(shí)的條件下,,判斷催化劑的性能。
Fig.1 (a) and (c) Polarization curves[4, 5]; (b) LSV curves[6]; (d) Overpotentials (at 10 mA·cm-2) [5].
[1] Zhu Han, Wang Qingfa*, Gao Guohua*, et al. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System toward Synergetic Electrocatalytic Water Splitting[J]. Advvanced Materials, 2015, 27(32): 4752.
[2] Bard Allen J, Faulkner Larry R, Leddy Johna, Zoski Cynthia G. Electrochemical Methods: Fundamentals and Applications[B], Department of Chemistry and Biochemistry University of Texas at Austin, Wiley, vol. 12. New York, 2000.
[3] S. Anantharaj, S. R. Ede, Subrata Kundu*, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 2018, 11:744.
[4] Priti Sharma, Debdyuti Mukherjee, Yoel Sasson*, et al. Pd doped carbon nitride (Pd-g-C3N4): an efficient photocatalyst for hydrogenation via an Al-H2O system and an electrocatalyst towards overall water splitting[J]. Green Chemistry, 2022, DOI: 10.1039/d2gc00801g.
[5] Zhang Ya, Hu Lang, Zhang Yongcai*, et al. NIR Photothermal-Enhanced Electrocatalytic and Photoelectrocatalytic Hydrogen Evolution by Polyaniline/SnS2 Nanocomposites[J]. ACS Applied Nano Materials, 2022, 5, 391.
[6] Bai Jinwei, Hjinlu*, Wang Lei*, et al. Reduction of Charge Carrier Recombination by Ce Gradient Doping and Surface Polarization for Solar Water Splitting[J]. Chemical Engineering Journal, 2022, 448: 137602.
以上部分是筆者根據(jù)參考文獻(xiàn)進(jìn)行翻譯和匯總,,筆者水平有限,,如有錯(cuò)誤,請(qǐng)大家指正,!原創(chuàng)不易,,若轉(zhuǎn)載此文章,請(qǐng)聯(lián)系工作人員并在轉(zhuǎn)載文章中備注信息來源,,否則按侵權(quán)處理!