原創(chuàng)不易,,若轉(zhuǎn)載此文章,請(qǐng)聯(lián)系工作人員并在轉(zhuǎn)載文章中備注信息來(lái)源,否則按侵權(quán)處理!
隨著人口和工業(yè)化程度的快速增長(zhǎng),,全球能源供應(yīng)急劇增加。據(jù)估計(jì),,截止到2021年全球能源消耗總量約為600 EJ (1018 J),,其中超過80%的能源供應(yīng)來(lái)自于化石燃料[1]。而化石燃料的使用會(huì)引起嚴(yán)重的CO2排放,。
最新統(tǒng)計(jì)數(shù)據(jù)表明,,大氣中的CO2含量從工業(yè)革命前的280 ppm上升到2020年的416 ppm(圖1)[2]。CO2的過量排放會(huì)帶來(lái)全球變暖,、冰川融化,、生物多樣性喪失等一系列問題[3, 4]。因此,,CO2的轉(zhuǎn)化利用已經(jīng)迫在眉睫,。
圖1. 1958年至今全球CO2排放量[2].
迄今為止,已經(jīng)發(fā)展了多種技術(shù)可將CO2轉(zhuǎn)化為碳?xì)浠衔锘蚋吒郊又祷瘜W(xué)品,,主要包括熱催化[5,6],、生物催化[7]、光電催化[8, 9],、電催化[10, 11]和光催化還原[12-14]等,。
在這些方法中,光催化CO2還原過程模擬自然光合作用,,利用太陽(yáng)能和光催化劑將CO2和H2O進(jìn)行催化轉(zhuǎn)化(亦稱人工光合作用),,可以很好的實(shí)現(xiàn)太陽(yáng)能燃料和高價(jià)值化學(xué)品的生產(chǎn),如:甲醇,、乙醇,、碳?xì)浠衔锏?sup>[15, 16],,如圖2所示。因此,,光催化CO2還原也被認(rèn)為是解決全球能源和環(huán)境問題的最有前途的方案之一,。
近年來(lái),光催化CO2還原的相關(guān)研究日漸增多,。相比于傳統(tǒng)熱催化方法,,光催化CO2還原反應(yīng)具有如下四大優(yōu)勢(shì)[17]:
①光催化CO2還原反應(yīng)外部能量供應(yīng)僅為太陽(yáng)能,取之不盡用之不竭,;
②光催化CO2還原反應(yīng)中的產(chǎn)物以H2O和CO2為反應(yīng)原料,,易于獲取,;
③光催化CO2還原反應(yīng)條件溫和,,一般為常溫、常壓,;
④光催化CO2還原反應(yīng)無(wú)二次污染,。
圖2. A自然光合作用,B人工光合成(光催化CO2還原反應(yīng))示意圖[16].
光催化CO2還原反應(yīng)是一個(gè)復(fù)雜的多步過程,。一般情況下,,光催化CO2還原反應(yīng)過程主要涉及如下三個(gè)步驟[18]:
①半導(dǎo)體光催化劑受到能量大于其禁帶寬度(Eg)的光激發(fā);
②光生電子和光生空穴的分離,;
③光生電子遷移到光催化劑表面與CO2和H+發(fā)生反應(yīng)并形成還原產(chǎn)物,,光生空穴與H2O發(fā)生氧化反應(yīng)產(chǎn)生O2。
整個(gè)光催化CO2還原反應(yīng)過程可以在純氣相中發(fā)生,,也可在溶液體系中發(fā)生[16],。
圖3. 光催化CO2還原示意圖.[17].
目前,光催化CO2還原反應(yīng)的產(chǎn)物主要包括:C1類產(chǎn)物(CO,、CH4,、CH3OH、HCOOH)和C2類產(chǎn)物(C2H4,、C2H6,、C3H6、C2H5OH等),。
在化工領(lǐng)域中,,光催化CO2還原反應(yīng)的產(chǎn)物分別具有不同的作用[1, 19]。
①CO主要可被用作費(fèi)托合成反應(yīng)的原料氣,,用于生產(chǎn)高碳類化學(xué)品,;
②CH4是天然氣的主要成分,同時(shí)也可被用于CO2的重整反應(yīng),;
③液態(tài)產(chǎn)物CH3OH和HCOOH主要可被用于燃料電池,,CH3OH也可作汽油的添加劑,;
④乙烯主要用于聚乙烯和乙二醇的生產(chǎn),乙烷用于制備乙烯,。乙醇主要應(yīng)用于化學(xué)溶劑,、醫(yī)療和燃料中;
⑤乙二醇用于聚乙烯對(duì)苯二甲酸酯(滌綸的原料)的生產(chǎn),。
CO2的C=O鍵能高達(dá)750 kJ·mol-1,,其線性對(duì)稱分子結(jié)構(gòu)使其不易被活化[16, 20]。因此,,在熱力學(xué)上,CO2的活化需要高能輸入,。受制于轉(zhuǎn)化效率和選擇性問題,,目前的光催化CO2還原研究仍處于實(shí)驗(yàn)室階段。
現(xiàn)階段光催化CO2反應(yīng)主要面臨以下幾方面挑戰(zhàn)[3, 16]:
①光催化CO2還原反應(yīng)所使用的催化劑有限的光吸收能力,;
②光催化CO2還原反應(yīng)中嚴(yán)重的光生載流子復(fù)合,;
③CO2難于吸附活化;
④與光催化CO2還原反應(yīng)發(fā)生競(jìng)爭(zhēng)的光催化析氫反應(yīng)需被有效抑制,;
⑤光催化劑的穩(wěn)定性有待提升,;
⑥待開發(fā)簡(jiǎn)便的光催化CO2還原反應(yīng)催化劑合成工藝;
⑦缺乏大量關(guān)于光催化CO2還原反應(yīng)的機(jī)理研究,,還原產(chǎn)物的選擇性難于調(diào)控,。
針對(duì)以上問題,一方面可以通過設(shè)計(jì)合成高效催化劑提升光催化CO2還原反應(yīng)的轉(zhuǎn)化效率和提高目標(biāo)產(chǎn)物的選擇性,,另一方面,,泊菲萊科技期望與各位專家朋友們進(jìn)行交流和深入合作,開發(fā)設(shè)計(jì)合理的反應(yīng)器,,通過優(yōu)化光催化CO2還原反應(yīng)工藝,,積極推動(dòng)光催化CO2還原反應(yīng)的相關(guān)研究。
[1]Lin Huiwen, Zhang Huabin*, Ye Jinhua* et. al., Toward solar-driven carbon recycling[J]. Joule, 2022, 6, 1-21.
[2]R. Keeling, Scripps institution of oceanography. scrippsco2.ucsd. edu/, 2022.
[3]Gong Eunhee, Ali Shahzad, In Su-Il* et. al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy Environmental Science, 2022. DOI: 10.1039/d1ee0271
[4]Wang Wan-Hui*, Himeda Yuichiro*, Fujita Etsuko* et. al., CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chemical Reviews, 2015, 115, 12936−12973.
[5]Rui Ning, Rodriguez José A.*, Liu Chang-Jun* et. al., Hydrogenation of CO2 to methanol on a Auδ+-In2O3–x catalyst[J]. ACS Catalysis, 2020, 10, 11307-11317.
[6]Hu Jingting, Wang Ye*, Deng Dehui* et. al., Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis, 2021, 4, 242-250.
[7]Gong Fuyu, Zhang Yanping* et. al., Li Yin*, Biological carbon fixation: From natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28, 221-227.
[8]Dong Wan Jae, Lee Jong-Lam*, Zetian Mi*, et. al., Silver halide catalysts on GaN nanowires/Si heterojunction photocathodes for CO2 reduction to syngas at high current density[J]. ACS Catalysis, 2022, 12, 2671-2680.
[9]Qin Yin, Hu Liuyong*, Gu Wenling*, et. al., Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity[J]. ACS Nano, 2022. DOI: 10.1021/acsnano.1c10303.
[10]Liu Shuai, Chen Yu*, Liu Xijun*, et. al., Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst[J]. Chemial Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.135294.
[11]Luc Wesley, Chen Jingguang G.*, Jiao Feng* et. al., SO2-induced selectivity change in CO2 electroreduction[J]. Journal of the American Chemical Society, 2019, 141, 9902-9909.
[12]Liu Qiong, Xiang Zhangmin*, Wang Fuxian*, et. al., Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride[J]. Energy Environmental Science, 2022, 15, 225.
[13]Li Fang, Yue Xiaoyang, Xiang Quanjun*, et. al., Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 292, 120179.
[14]Hao Jingxuan, Min Yulin*, Li Hexing*, et. al., Utilizing new metal phase nanocomposites deep photocatalytic conversion of CO2 to C2H4[J]. Chemical Engineering Journal, 2021, 423, 130190.
[15]Shen Huidong, Peppel Tim*, Sun Zhenyu*, et. al., Photocatalytic reduction of CO2 by metal-free-Based materials: recent advances and future perspective[J]. Solar RRL 2020, 4, 1900546.
[16]Li Xin, Yu Jiaguo*, Jaroniec Mietek* et. al., Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119, 3962-4179.
[17]Fu Junwei, Yu Jiaguo*, Liu Min*, et. al., Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32, 222-243.
[18]Albero Josep, Peng Yong, García Hermenegildo*, et. al., Photocatalytic CO2 reduction to C2+ products[J]. ACS Catalysis, 2020, 10, 5734−5749.
[19]Liu Lizhen, Huang Hongwei*, Ma Tianyi*, et. al., Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction[J]. Nano Energy, 2020, 75, 104959.
以上部分是筆者根據(jù)參考文獻(xiàn)進(jìn)行翻譯和匯總,,筆者水平有限,,如有錯(cuò)誤,請(qǐng)大家指正,!