精品国产乱码一区二区三区99国产成人99久久亚洲综合|91精品国产色综合久久不8亚洲av综合色,|久久香蕉av亚洲中文字幕日本一区|国产精品国产三级国产av玫瑰|中文字幕精品三区|国产精品永久久久久|日本人妻中文字幕乱|日韩精品人妻系列|国产吃瓜黑料|欧美熟妇精品一区二区蜜桃,国产精品久久久久久精品激情文学中文字幕av ,国产69精品久久久久9999人,中文字幕日本人妻国产av巨作麻豆

創(chuàng)見|實(shí)干|卓越
與光同程,,做民族儀器企業(yè)

氙燈xenon light source

PLS-SXE300D/300DUV氙燈光源

PLS-SXE300D/300DUV Xenon lamp source

產(chǎn)品中心:氙燈品牌:泊菲萊瀏覽量:3128
PLS-SXE300D/300DUV氙燈光源采用專業(yè)進(jìn)口電源,紋波低,、穩(wěn)定可靠,,有效延長光源使用壽命;結(jié)構(gòu)緊湊,,體積小,,對(duì)實(shí)驗(yàn)空間的需求小,; 非金屬燈箱,,一定程度避免實(shí)驗(yàn)室電氣使用安全風(fēng)險(xiǎn)。
  • 產(chǎn)品介紹
  • 應(yīng)用領(lǐng)域
  • 文獻(xiàn)
  • 技術(shù)維護(hù)

關(guān)鍵特征

● 采用專業(yè)進(jìn)口電源,,紋波低,、穩(wěn)定可靠,有效延長光源使用壽命,;

● 非金屬燈箱,,一定程度避免實(shí)驗(yàn)室電氣使用安全風(fēng)險(xiǎn);

● 結(jié)構(gòu)緊湊,,體積小,,對(duì)實(shí)驗(yàn)空間的需求減小,;

● 專利軸向吸風(fēng)式散熱結(jié)構(gòu),,保證燈箱的有效散熱。

 

應(yīng)用領(lǐng)域

▲特別適用   ●較為適用  ○可以使用

▲ 光催化分解水制氫/氧        ▲ 光催化全分解水         ▲ 光催化CO2還原                

● 光降解氣體污染物(如VOCs ,、甲醛,、氮氧化物,、硫氧化物等)

● 光降解液體污染物(如染料、苯及苯系物等)

○ PEC光電化學(xué)        ○ 光致變色         ○ 光合成        ○ 膜光催化

 

光輸出特性

● 總光功率:50 W,;

● 光譜范圍:320~780 nm,,可拓展至2500 nm;

● 配合濾光片:紫外光區(qū),,可見光區(qū),,近紅外光及窄帶光;

● 光源發(fā)射角:平均6°,;

● 光斑直徑:照射距離 30~60 mm,;

 

光源穩(wěn)定性

● 長周期輻照不穩(wěn)定性:≤±3%,;

● 基于微型CPU的集中數(shù)字化供電管理控制,;

● 原裝進(jìn)口開關(guān)電源,長燈泡壽命,,穩(wěn)定光源,;

● 可選配PLS-LA320A 氙燈光源勻光器

 

控制方式

● 工作模式:程控模式,;

● 電流限制值:21 A,;

● 燈泡(耗材)使用壽命:>1000 h(滿足光催化正常條件下的光強(qiáng)度要求);

● 觸發(fā)方式:一體式高壓觸發(fā)(二級(jí)電壓且無高壓傳輸),;

 

安全性

●燈箱-電源連接線纜無高壓傳輸特性,、風(fēng)扇故障保護(hù)、風(fēng)扇關(guān)機(jī)延時(shí),、過載過流自動(dòng)斷電保護(hù),;

●一種基于集成式氙燈的散熱結(jié)構(gòu);

 

基礎(chǔ)參數(shù)

● 燈泡功率:300 W,;

● 功率調(diào)整范圍:150 W~300 W;

● 電源紋波:200 mVp-p(峰-峰值)LED數(shù)字電流顯示,;

 

代表文獻(xiàn)

北京化工大學(xué)趙宇飛課題組引用PLS-SXE300D光源.png

湖南大學(xué)尹雙鳳課題組引用PLS-SXE300D光源.png

華東理工大學(xué)引用PLS-SXE300D光源.png

華東師范大學(xué)劉超團(tuán)隊(duì)引用PLS-SXE300D氙燈光源.png

盧小泉團(tuán)隊(duì)引用PLS-SXE300D光源.png

鄭州大學(xué)河南先進(jìn)技術(shù)研究院課題組引用PLS-SXE300D氙燈光源.png

中科院理化所張鐵銳團(tuán)隊(duì)引用PLS-SXE300D光源.png

中科院理化所張鐵銳團(tuán)隊(duì)引用PLS-SXE300D光源1.png

中南大學(xué)張斗團(tuán)隊(duì)引用PLS-SXE300D光源.png

歐洲科學(xué)院院士唐軍旺團(tuán)隊(duì)引用PLS SXE300DUV氙燈光源.png

武漢理工大學(xué)張高科團(tuán)隊(duì)PLS SXE300D氙燈光源.png

香港中文大學(xué)余濟(jì)美團(tuán)隊(duì)引用PLS SXE300D氙燈光源.png

  • 光催化分解水制氫/氧
  • 光催化全分解水
  • 光催化CO2還原
  • 光降解氣體污染物
  • 光降解液體污染物
  • PEC光電化學(xué)
  • 光致變色
  • 光合成
  • 膜光催化
  • [1] Wang Zhuangzhuang, Zhang Gaoke. Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants:Boosted charge separation, DFT calculations and mechanism unveiling. Chemical Engineering Journal, 2021, 418: 129460.
  • [2] Ji Jiahui, Xing Mingyang. Tuning redox reactions via defects on CoS2-xfor sustainable degradation of organic pollutants. Angewandte Chemie International Edition, 2021, 60:2903-2908.
  • [3]Li Jun. Interfacial engineering of Bi19Br3S27 Nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. Journal of the American Chemical Society2021, 143: 6551-6559.
  • [4]Liu Chao, Yu Chengzhong. Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nature Communications2020, 11: 4971.
  • [5] Ning Xingming, Lu Xiaoquan. Plasmon‐enhanced charge separation and surface reactions based on Ag‐loaded transition‐metal hydroxide for photoelectrochemical water oxidation. Advanced Energy Materials, 2021, 11: 2100405.
  • [6] Pan Jinbo, Yin Shuangfeng. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angewandte Chemie International Editionl2021, 60: 1433-1440.
  • [7] Wang Jigeng, Zhao Yufei. Highly selective photo-hydroxylation of phenol using ultrathin NiFe-layered double hydroxide nanosheets under visible-light up to 550 nm. Green Chemistry, 2020, 22: 8604-8613.
  • [8] Xiao Kemeng, Wong Pokeung. Wong Po Keung. Interfacing iodine-doped hydrothermally carbonized carbon with escherichia coli through an“Add-on” mode for enhanced light-driven hydrogen production. Advanced Energy Materials2021, 11: 2100291.
  • [9] Zong, Xupeng, Sun Zaicheng. Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. Applied Catalysis B: Environmental2021, 291: 120099.
  • [10] J. Yuan, X. Yi, Y. Tang, et al., Efficient Photocatalytic Nitrogen Fixation: Enhanced Polarization, Activation, and Cleavage by Asymmetrical Electron Donation to N?N Bond, Advanced Functional Materials, 2019, 30, 1906983.
  • [11] S. Chen, Z. Sun, W. Xiang, et al., Plasmonic wooden flower for highly efficient solar vapor generation, Nano Energy, 2020, 76, 104998.
  • [12] Y. Song, H. Wang, Z. Wang, et al., Selective Photocatalytic Synthesis of Haloanilines from Halonitrobenzenes over Multifunctional AuPt/Monolayer Titanate Nanosheet, ACS Catalysis, 2018, 8, 9656-9664.
  • [13] Ming-Yu Qi, Yue-Hua Li, Masakazu Anpo, Zi-Rong Tang, and Yi-Jun Xu*,Efficient Photoredox-Mediated C–C Coupling Organic Synthesis andHydrogen Production over Engineered Semiconductor Quantum Dots, ACS Catalysis, 2020, 10, 14327–14335.
  • [14] Jin-Bo Pan,Bing-Hao Wang,Jin-Bo Wang,Hong-Zhi Ding,Wei Zhou,Xuan Liu,Jin-Rong Zhang,Dr. Sheng Shen,Dr. Jun-Kang Guo,Dr. Lang Chen,Prof.?Dr. Chak-Tong Au,Prof.?Dr. Li-Long Jiang,Prof.?Dr. Shuang-Feng Yin,Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO4 Photoanode by NiFe-MOFs Thin Layer for Water Oxidation,Angewandte Chemie International Edition, DOI: 10.1002/anie.202012550.
  • [15] Jikang Wang, Yanqi Xu, Jiaxin Li, Xiaodong Ma, Si-Min Xu, Rui Gao, Yufei Zhao * and Yu-Fei Song.* Highly Selective Photo-hydroxylation of Phenol Using Ultrathin NiFe-layered Double Hydroxide Nanosheets under Visible-light up to 550 nm. Green Chem., 2020, DOI: 10.1039/d0gc02786c.
  • [16] Wei Bi, et al, Revealing the Sudden Alternation in Pt@h-BN Nanoreactors for Nearly 100% CO2-to-CH4 Photoreduction, Adv. Funct. Mater. 2021
  • [17] Liu C, Mao S, Wang H, et al. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction[J]. Chemical Engineering Journal, 2022, 430: 132806.
  • [18] Yang, Lang, et al. "Photo-thermal synergy for boosting photo-Fenton activity with rGO-ZnFe2O4: Novel photo-activation process and mechanism toward environment remediation." Applied Catalysis B: Environmental 292 (2021): 120198.
  • [19] Liu Qiong., Zhai Di., Xiao Zhida., Tang Chen., Sun Qiwei., Luo Hang., Zhang Dou. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation. Nano Energy. 2022; 92. 
  • [20] ShanshanLiu, HeyuanLiu, LiShen, ZuoxuXiao, YujiaHu,JunZhou, XiangyangWang, ZhaobinLiu, ZhiLi, XiyouLi, Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity,Chemical Engineering Journal,10.1016/j.cej.2021.133377
  • [21] Jin Ye, Jiating Xu, Chunsheng Li, et al. Novel N-Black In2O3-x/InVO4 heterojunction for efficient photocatalytic fixation: Synergistic effect of exposed (321) facet and oxygen vacancy, Journal of Materials Chemistry A, 2021, 9, 24600-24612.
  • [22] Qian Dong, Zhiwu Chen, Bo Zhao,Yizeng Zhang, Zhenya Lu, Xin Wang, Jinliang Li, Wei Chen. In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction, Journal of Colloid and Interface Science, 608 (2022) 1951–1959.
  • [23] Zhiwen Wang, Huan Wang, Ling Wu, et. al. CuPd alloy decorated SnNb2O6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light. Chemical Engineering Journal, 2021, 429, 132018. 
  • [24] Cooperative hydrogen production and C−C coupling organic synthesis in one photoredox cycle Applied Catalysis B: Environmental 2021, 120812.
  • [25] Yingzhang Shi, Huan Wang, Zhiwen Wang, Cheng Liu, Mingchuang Shen, Taikang Wu, Ling Wu*,,Surface functionalized Pt/SnNb2O6 nanosheets for visible-light-driven the precise hydrogenation of furfural to furfuryl alcohol. Journal of Energy Chemistry 2022, 66, 566–575.
  • [26] Liu C, Mao S, Shi M, et al. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation [J]. Journal of Hazardous Materials, 2021, 420:126613.
  • [27] Wang C, Liu N, et al. Fluoro-Substituted Covalent Organic Framework Particles Anchored on TiO2 Nanotube Arrays for Photoelectrochemical Determination of Dopamine. ACS Appl. Nano Mater. 2021.
  • [28] Zhenhua Li, Xin Zhang, Jinjia Liu, Run Shi,* Geoffrey I.N. Waterhouse, Xiao-Dong Wen, and Tierui Zhang*. Titania-Supported Ni2P/Ni Catalysts for Selective Solar-Driven CO Hydrogenation.
  • [29] Rongdi Tang, Daoxin Gong, Yaocheng Deng, Sheng Xiong, Jiangfu Zheng, Ling Li, Zhanpeng Zhou, Long Su, Jia Zhao,π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation,Journal of Hazardous Materials,10.1016/j.jhazmat.2021.126944
  • [30] Jin Ye, Jiating Xu, et. al, Efficient photocatalytic reduction of CO2 by a rhenium-doped TiO2-x/SnO2 inverse opal S-scheme heterostructure assisted by the slow-phonon effect. Separation and Purification Technology, 277, 2021, 119431 
  • [31] R. Tang, D. Gong, Y. Deng, S. Xiong, J. Deng et. al. π-π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 131809 
  • [32] Chang-Long Tan, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu, Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2evolution, Applied Catalysis B: Environmental, 2021, 298, 120541. 
  • [33] Zhao H, Li C F, Hu Z Y, et al. Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science, 2021, 604: 131-139. 
  • [34] J. Shen, L. Qian, J. Huang, Y. Guo, Z. Zhang, Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3 :Internal electric field, DFT calculation and degradation mechanism, Separation and Purification Technology 275 (2021). 
  • [35] Huang, Z.; Wan, Y.; Liang, J.; Xiao, Y.; Li, X.; Cui, X.; Tian, S.; Zhao, Q.; Li, S.; Lee, C.-S. ACS Applied Materials & Interfaces 2021.
  • [36] S. Bai, T. Li, et al., Scale-up synthesis of monolayer layered double hydroxide nanosheetsvia separate nucleation and aging steps method for efficient CO2 photoreduction. Chem. Eng. J., 2021, 419, 129390. 
  • [37] Z. Huang, J. Wei, Y. Wan, P. Li, J. Yu, J. Dong, S. Wang, S. Li, C.-S. Lee, Small, n/a, 2101487.2021, 564, 150432
  • [38] Xi Yamin, Zhang Xingwei, Shen Yue, et al. Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst. Applied Catalysis B: Environmental 2021, 297, 120411.
  • [39] J.L. Zhang, H. Tao, S. Wu, J. Yang, M. Zhu, Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5, Appl. Catal. B-Environ., 296 (2021) 120372.
  • [40] Dan Yin, Xingming Ning, Peiyao Du*, Dongxu Zhang, Qi Zhang, Xiaoquan Lu*. Cascaded multiple-step hole transfer for enhancing photoelectrochemical water splitting. Appl. Catal. B: Environ. 2021, 296, 120313.
  • [41] Jun Li, Wenfeng Pan, Qiaoyun Liu*, Zhiquan Chen, Zhijie Chen, Xuezhen Feng, and Hong Chen*,Interfacial Engineering of Bi19Br3S27 Nanowires Promotes Metallic Photocatalytic CO2 Reduction Activity under Near-Infrared Light Irradiation,J. Am. Chem. Soc. 2021, 143, 17, 6551–6559
  • [42] Hang Xie, Yanmei Zheng, Xinli Guo, et al. Rapid Microwave Synthesis of Mesoporous Oxygen-Doped g-C3N4 with Carbon Vacancies for Efficient Photocatalytic H2O2 Production [J]. ACS Sustainable Chemistry & Engineering, 2021, 9, 19, 6788–6798.
  • [43] S.-H. Li, M.-Y. Qi, et. al. Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal., B 2021, 292, 120157.
  • [44] Xuejun Ren, Meichao Gao, Yanfeng Zhang*, Zizhong Zhang, Xingzhong Cao*, Baoyi Wang, Xuxu Wang*,, Photocatalytic reduction of CO2 on BiOX:Effect of halogen element type and surface oxygen vacancy mediated mechanism. Applied Catalysis B: Environmental 274 (2020) 119063.
  • [45] Zhenhua Li, Run Shi, Jiaqi Zhao, and Tierui Zhang. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system.Nano Research 2021.
  • [46] Xingming Ning, Dan Yin, Yiping Fan, Qi Zhang, Peiyao Du,* Dongxu Zhang, Jing Chen, and Xiaoquan Lu*. Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2021, 2100405.
  • [47] Hengli Qian, Guanjie Yu, Qidong Hou et. al. Ingenious control of adsorbed oxygen species to construct dual reaction centers photo-Fenton catalyst with high-speed electron transmission channel for PPCPs degradation. Applied Catalysis B: Environmental, 2021.
  • [48] Zhao H, Liu P, Wu X, et al. Plasmon Enhanced Glucose Photoreforming for Arabinose and Gas Fuel Co-production over 3DOM TiO2-Au. Applied Catalysis B: Environmental, 2021: 120055.
  • [49] Yu-Xuan Tan, Lang Chen, Sheng Shen, Jun-Kang Guo, Shuang-Feng Yin et. al. Boosted Photocatalytic Oxidation of Toluene into Benzaldehyde on CdIn2S4-CdS: Synergetic Effect of Compact Heterojunction and S-Vacancy. ACS Catal 2021, 11, 2492-2503.
  • [50] Changhai Lu, Xinru Li, Qian Wu, Juan Li, Long Wen, Ying Dai, Baibiao Huang, Baojun Li and Zaizhu Lou*. Constructing Surface Plasmon Resonance on Bi2WO6 to Boost High-Selective CO2 Reduction for Methane ACS Nano 2020, DOI.org/10.1021/acsnano.1c00452
  • [51] Syed Jalil Shah, Ruimeng Wang, Zhu Gao, Yaseen Muhammad, Hanzhuo Zhang, Zhengsheng Zhang, Zhe Chu, Zhongxing Zhao, Zhenxia Zhao. IL-assisted Synthesis of Defect-rich Polyaniline/NH2-MIL-125 Nanohybrids with Strengthened Interfacial Contact for Ultra-fast Photocatalytic Degradation of Acetaldehyde under High Humidity. Chemical Engineering Journal 411 (2021) 128590.
  • [52]Zhiling Guan, Xiaoming Li,You Wu; Zhuo Chen,Xiaoding Huang, Dongbo Wang, Qi Yang, Jiale Liu, Suhong Tian, Xiyu Chen,Hui Zhao ,AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride.Chemical Engineering Journal .
  • [53] Renli Yin, Mingshan Zhu et al. Peroxydisulfate bridged photocatalysis of covalent triazine framework for carbamazepine degradation. Chemical Engineering Journal  2022, 427, 131613.
  • [54] Z. Li, J. Hu, Z. Lou, L. Zeng, M. Zhu*, Molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol A in indoor dust and water, Microchimica Acta, 2021, 188, 320.
  • [55] Yeran Li, Xin Jin, Wei Li et. al. Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation. Sci. China Mater. (2021).
  • [56] Jing Wang, Ling Yuan, Chaoqi Zhang, Shumin Li, Guozhong Wang, Jingjing Wan, Chao Liu,* Chengzhong Yu*, Metal-Organic Frameworks Derived Titanium Oxides via Soft Interface Adaptive Transformation, Advanced Functional Materials, 2021, 31, 2107260.
  • [57] Xueying Cheng, Renquan Guan, Yunning Chen et. al. The unique TiO2(B)/BiOCl0.7I0.3-P Z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. Chemical Engineering Journal 2022, 431, 134021.
  • [58] Z.H. Liu, M.X. Ji, J.Z. Zhao, Y. Zhang, X. Sun, Y.F. Shao, H.M. Li, S. Yin, J.X. Xia, Dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide, Journal of Colloid and Interface Science.
  • [59] Wang X, Wang X, et al. nterfacial engineering improved internal electric field contributing to direct Z-scheme-dominated mechanism over CdSe/SL-ZnIn2S4/MoSe? heterojunction for efficient photocatalytic hydrogen. Chemical Engineering Journal 431 (2022) 134000
  • [60] Yan-Yang Li, Jun-Sheng Fan, Rong-Qing Tan, et. al. Selective Photocatalytic Reduction of CO2 to CH4 Modulated by Chloride Modification on Bi2WO6 Nanosheets. ACS Appl. Mater. Interfaces 2020, DOI: 10.1021/acsami.0c11551.
  • [61] Lei Luo, et al. Binary Au–Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. Journal of the American Chemical Society, 2021, 10.1021/jacs.1c09141.
  • [62] HaijiaoLu,Yi-MingZhao,Sandra ElizabethSaji,XinmaoYin,AryWibowo,Chi SinTang,ShiboXi,PengfeiCao,MikeTebyetekerwa,BoruiLiu,MarcHeggen,Rafal E.Dunin-Borkowski,AntonioTricoli,Andrew T.S.Wee,Hieu T.Nguyen,Qing-BoYan,ZongyouYin,All room-temperature synthesis, N2 photofixation and reactivation over 2D cobalt oxides,Applied Catalysis B: Environmental,2022, 121001
  • [63] Unique Insights into Photocatalytic VOCs Oxidation over WO3/Carbon Dots Nanohybrids Assisted by Water Activation and Electron Transfer at Interfaces. Journal of Hazardous Materials, 2021. 
  • [64] Lejing Li,Liangpang Xu,Zhuofeng Hu,Jimmy C. Yu,Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production,Advanced Functional Materials,2021,2106120
  • [65] Chuanwang Xing, Guiyang Yu,* Ting Chen, Shanshan Liu, Qiqi Sun, Qi Liu, Yujia Hu, Heyuan Liu, Xiyou Li,* Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal., B, 2021, DOI: 10.1016/j.apcatb.2021.120534
  • [66] X. Xu, J. Wang, T. Chen, N. Yang, S. Wang, X. Ding, H. Chen, Deep insight into ROS mediated direct and hydroxylated dichlorination process for efficient photocatalytic sodium pentachlorophenate mineralization, Appl. Catal. B- Environ., 296 (2021) 120352.
  • [67] Marriage of 2D Covalent–Organic Framework and 3D Network as Stable Solar-Thermal Stillfor Efficient Solar Steam Generation, Small methods. 2021, 202100036.
  • [68] Z. Z. Wang, Q. Cheng, X. T. Wang, J. M. Li, W. X. Li, Y. Li, G. K. Zhang, Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants:Boosted charge separation, DFT calculations and mechanism unveiling, Chem. Eng. J., DOI: 10.1016/j.cej.2021.129460.
  • [69] Huining Huang, Run Shi, Zhenhua Li, Jiaqi Zhao, Chenliang Su, and Tierui Zhang,Triphase Photocatalytic CO2 Reduction over Silver-Decorated Titanium Oxide at a Gas-Water Boundary,Angew. Chem. Int. Ed. 2022, e202200802.
相關(guān)產(chǎn)品推薦