精品国产乱码一区二区三区99国产成人99久久亚洲综合|91精品国产色综合久久不8亚洲av综合色,|久久香蕉av亚洲中文字幕日本一区|国产精品国产三级国产av玫瑰|中文字幕精品三区|国产精品永久久久久|日本人妻中文字幕乱|日韩精品人妻系列|国产吃瓜黑料|欧美熟妇精品一区二区蜜桃,国产精品久久久久久精品激情文学中文字幕av ,国产69精品久久久久9999人,中文字幕日本人妻国产av巨作麻豆

創(chuàng)見|實干|卓越
與光同程,做民族儀器企業(yè)

氙燈xenon light source

Microsolar 300氙燈光源

Microsolar 300 Xenon lamp source

產(chǎn)品中心:氙燈品牌:泊菲萊瀏覽量:8520
Microsolar300 氙燈光源可實現(xiàn)高能量密度,、長時間連續(xù)照射,;具有恒定電流的輸出模式,,可確保氙燈光源的供電功率恒定,,且具有綜合的熱管理系統(tǒng),,采用全新的銅,、鋁結(jié)合散熱結(jié)構(gòu),,精心優(yōu)化的軸向散熱設(shè)計,,與關(guān)機風(fēng)扇散熱延時,、溫度傳感器監(jiān)測控制等多重手段結(jié)合,散熱效果極佳,,使氙燈光源箱體更為小巧靈活,,獲得了優(yōu)良的綜合性能。
  • 產(chǎn)品介紹
  • 應(yīng)用領(lǐng)域
  • 文獻(xiàn)
  • 技術(shù)維護

關(guān)鍵特征

● 具有恒光輻照度輸出(光控)和恒電流輸出(程控)兩種工作模式;

● 采用光學(xué)光反饋技術(shù),,實現(xiàn)光強的長期穩(wěn)定輸出,;

● 采用液晶顯示屏,顯示相對輻照值,、燈泡壽命計時,;

● 具有過載過流保護,風(fēng)扇延時等多種保護功能,。

 

應(yīng)用領(lǐng)域

▲特別適用   ●較為適用  ○可以使用

▲ 光催化分解水制氫/氧(長周期)       ▲ 光催化全分解水(長周期)       ▲ PEC光電化學(xué) 

● 光降解氣體污染物(如VOCs ,、甲醛、氮氧化物,、硫氧化物等)

● 光降解液體污染物(如染料,、苯及苯系物等)

○ 光催化CO2還原       ○ 光合成       ○ 膜光催化       ○ 光致變色

 

六大優(yōu)勢

  • Microsolar300 氙燈光源,應(yīng)用太陽模擬器核心技術(shù)(TSCS)的陶瓷氙燈光源產(chǎn)品,,讓實驗更準(zhǔn)確,、更可信、更可靠,,可重復(fù)性與可對比性也得到了質(zhì)的提高,! 

  • Microsolar300 氙燈光源具有恒定電流的輸出模式,可確保氙燈光源的供電功率恒定,。同時Microsolar300 氙燈光源內(nèi)置光學(xué)光反饋系統(tǒng),,開啟恒光輻照度輸出模式后,可根據(jù)使用者設(shè)定的輻照值,,實時檢測氙燈光源的輸出情況并自動進行輻照強度的調(diào)節(jié),,在相對時間內(nèi)使輻照強度平均數(shù)值更進準(zhǔn)的控制在設(shè)定數(shù)值內(nèi),提高實驗精準(zhǔn)性,。 

  • Microsolar300 氙燈光源,,可實現(xiàn)高能量密度、長時間連續(xù)照射,。結(jié)合各種濾光片組合后,,可實現(xiàn)窄波段的催化劑改進效果評價及寬帶通總體催化效果評價。同時能夠結(jié)合多種反應(yīng)器(系統(tǒng)),,完成固,、液、氣相的在線及離線分析實驗,。Microsolar300 氙燈光源可以將研究范圍拓展至大氣層外的太陽光譜,。 

  • Microsolar300 氙燈光源,在設(shè)計中采用微處理器技術(shù),,與程序化全數(shù)字的電路管理,。該系統(tǒng)的光輸出可沿光軸方向360°旋轉(zhuǎn),,實現(xiàn)氙燈光源的水平與垂直照射方式。高集中型氙燈光源箱,,可滿足小空間內(nèi)的多方向照射實驗的需求,。 

  • Microsolar300 氙燈光源,具有綜合的熱管理系統(tǒng),,采用全新的銅,、鋁結(jié)合散熱結(jié)構(gòu),精心優(yōu)化的軸向散熱設(shè)計,,與關(guān)機風(fēng)扇散熱延時,、溫度傳感器監(jiān)測控制等多重手段結(jié)合,散熱效果極佳,,使氙燈光源箱體更為小巧靈活,,獲得了優(yōu)良的綜合性能。 

  • Microsolar300 氙燈光源基于優(yōu)秀的散熱設(shè)計,,有效延長了氙燈光源的使用壽命,,并提高發(fā)光效率。同時液晶顯示屏上會顯示氙燈的累計使用時間,。

 

光輸出特性

總光功率

● 50 W,,可見區(qū)19.6 W,紫外區(qū)2.6 W

光譜范圍

● 320~780 nm (可拓展至2500 nm)

配合濾光片

● 紫外光區(qū),,可見光區(qū),,近紅外光區(qū)及窄帶光

光源發(fā)散角

● 平均6°

光斑直徑

● 依照射距離30~60 mm

 

光源穩(wěn)定性

● 直接測量光輸出變化的精密光學(xué)光反饋系統(tǒng)

● 長周期輻照不穩(wěn)定性≤±3%(8 h)

● 基于微型CPU的集中數(shù)字化供電管理控制

● 實時相對輻照值顯示(相對值),定時功能

 

安全性

● 燈箱 - 電源連接線纜無高壓傳輸特性,、風(fēng)扇故障保護,,風(fēng)扇關(guān)機延時、過載過流自動斷電防護功能

● 一種基于集成式氙燈的散熱結(jié)構(gòu)

 

控制方式

工作模式

● 程控模式,,光控模式

電流

● 21 A

 燈泡(耗材)使用壽命

>1000 h( 滿足光催化正常條件下的光強度要求 )

 

基礎(chǔ)參數(shù)

燈泡功率

● 300 W

功率調(diào)整范圍

● 150 W~300 W

電源紋波

● 200 mVp-p (峰-峰值)

電源紋波

● 數(shù)字電流顯示

圖表1.jpg

代表文獻(xiàn)

i澳洲國立大學(xué)大學(xué)殷宗友團隊引用Microsolar300氙燈.png

清華大學(xué)李亞棟團隊引用Microsolar300氙燈.png

中科院化學(xué)所盛樺團隊引用Microsolar300氙燈.png

  • 光催化分解水制氫/氧(長周期)
  • 光催化全分解水(長周期)
  • PEC光電化學(xué)
  • 光降解氣體污染物
  • 光降解液體污染物
  • 光催化CO2還原
  • 光合成
  • 膜光催化
  • 光致變色
  • [1] Han Tong, Peng Qing. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12: 4952.
  • [2] Li Yinyin, Xie Tengfeng. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 290: 120058.
  • [3] Shu Chang, Jiang Jiaxing. Boosting the photocatalytic hydrogen evolution activity for D-pi-A conjugated microporous polymers by statistical copolymerization. Advanced Materials, 2021, 33: e2008498.
  • [4] Wang Wei, Sheng Hua. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). Journal of the American chemical society, 2021, 143: 2984.
  • [5] X. Zhang, L. Lin, D. Qu, et al., Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid photocatalyst via incorporation with carbon dots, Applied Catalysis B: Environmental, 2020, 265, 118595.
  • [6] L. Wang, T. Nakajima, Y. Zhang, Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting, Journal of Materials Chemistry A, 2019, 7, 5258-5265.
  • [7] H. Liu, L. Li, C. Guo, et al., Thickness-dependent carrier separation in Bi2Fe4O9 nanoplates with enhanced photocatalytic water oxidation, Chemical Engineering Journal, 2020, 385, 123929.
  • [8] Y. Sheng, H. Miao, J. Jing, et al., Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances, Applied Catalysis B: Environmental, 2020, 272, 118897.
  • [9] Lei Wanying, Liu Minghua. Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018, 50: 552.
  • [10] Chang Xiaoxia, Gong Jinlong. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 2016, 55: 8840.
  • [11]Chang Xiaoxia, Gong Jinlong. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. Journal of the American chemical society, 2015, 137: 8356.
  • [12] Molten-Salt Electrochemical Biorefinery for Carbon-Neutral Utilization of Biomass J. Mater. Chem. A, 2021, DOI: 10.1039/D1TA09498J.
  • [13] Tong Han, Kaian Sun, Xing Cao et. al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun. 2021, 12, 4954.
  • [14] Sandra Elizabeth Saji, Haijiao Lu, Ziyang Lu, Adam Carroll, and Zongyou Yin. An Experimentally Verified LC-MS Protocol toward an Economical, Reliable, and Quantitative Isotopic Analysis in Nitrogen Reduction Reactions Small methods 2021, 5, 2000694.
  • [15] Nasir Uddin, Julien Langley, Chao Zhang, Alfred K.K. Fung, Haijao Lu, Xinmao Yin, Jingying Liu, Zhichen Wan, Hieu T. Nguyen, Yunguo Li, Nicholas Cox, Andrew T. S. Wee, Qiaoling Bao, Shibo Xi, Dmitri Golberg, Michelle L. Coote, Zongyou Yin. Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Applied Catalysis B: Environmental 2021, 292, 120212.
  • [16] Chang Shu, Chong Zhang, Jiaxing Jiang et. al. Boosting the Photocatalytic Hydrogen Evolution Activity for D-π-A Conjugated Microporous Polymers by Statistical Copolymerization. Advanced Materials 2021, DOI: 10.1002/adma.202008498.
  • [17] Wei Wang, Chaoyuan Deng, Shijie Xie, Yangfan Li, Wanyi Zhang, Hua Sheng, Chuncheng Chen, and Jincai Zhao. Photocatalytic C-C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). J. Am. Chem. Soc., DOI: 10.1021/jacs.1c00206.
  • [18] Jun Luo, Yani Liu, Chengyang Feng, Changzheng Fan, Lin Tang, Guangming Zeng, Ling-Ling Wang, Jiajia Wang and Xiang Tang. Joint Connection of Experiment and Simulation for Photocatalytic Hydrogen Evolution: Strength, Weakness, Validation and Complementarity. Journal of Materials Chemistry A 2021.
  • [19] Cheng Huang, Sirong Zou, Ye Liu, Shilin Zhang, Qingqing Jiang, Tengfei Zhou,* Sen Xin,* and Juncheng Hu*. Surface Reconstruction-Associated Partially Amorphized Bismuth Oxychloride for Boosted Photocatalytic Water Oxidation. ACS Appl. Mater. Interfaces. Publication Date (Web):January 21, 2021,,DOI: 10.1021/acsami.0c20338.
  • [20] Shengbo Zhang, Mei Li, Lisheng Li, Xiao Liu, Qingfeng Ge, Hua Wang et. al. Visible-Light-Driven Multichannel Regulation of Local Electron Density to Accelerate Activation of O-H and B-H Bonds for Ammonia Borane Hydrolysis. ACS Catalysis 2020, 10, 14903-14915.
  • [21] Yuan-Zhe Cheng , Wenyan Ji , Xianxin Wu , Xuesong Ding , Xin-Feng Liu , BaoHang,Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations,Applied Catalysis B: Environmental 306 (2022) 121110
  • [22] Zhaobo Fan, Xin      Guo      *, Mengxue Yang, Zhiliang Jin#, Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production, Chinese Journal of Catalysis, 2022, 43, 2708–2719.
  • [23] Qiao Wang, Yiting. Cao, Yuemi Yu et. al. Enhanced visible-light driven photocatalytic degradation of bisphenol A by tuning electronic structure of Bi/BiOBr. Chemosphere 2022, 308: 136276.
相關(guān)產(chǎn)品推薦