精品国产乱码一区二区三区99国产成人99久久亚洲综合|91精品国产色综合久久不8亚洲av综合色,|久久香蕉av亚洲中文字幕日本一区|国产精品国产三级国产av玫瑰|中文字幕精品三区|国产精品永久久久久|日本人妻中文字幕乱|日韩精品人妻系列|国产吃瓜黑料|欧美熟妇精品一区二区蜜桃,国产精品久久久久久精品激情文学中文字幕av ,国产69精品久久久久9999人,中文字幕日本人妻国产av巨作麻豆

創(chuàng)見(jiàn)|實(shí)干|卓越
與光同程,,做民族儀器企業(yè)

光催化photocatalysis

2023-05-26368

CO?還原 液-固相vs氣-固相

原創(chuàng)不易,,若轉(zhuǎn)載此文章,,請(qǐng)聯(lián)系工作人員并在轉(zhuǎn)載文章中備注信息來(lái)源,,否則按侵權(quán)處理!

光催化CO2還原反應(yīng)具有綠色,、條件溫和,、原料來(lái)源豐富等特點(diǎn),,因此被認(rèn)為是實(shí)現(xiàn)“碳達(dá)峰”和“碳中和”的有效途徑之一,。受制于轉(zhuǎn)化率和選擇性問(wèn)題,,目前的光催化CO2還原研究仍處于實(shí)驗(yàn)室階段,,除了開(kāi)發(fā)、合理設(shè)計(jì)高效催化劑,,同時(shí)也可以通過(guò)優(yōu)化反應(yīng)工藝,,改變反應(yīng)條件實(shí)現(xiàn)光催化CO2的高效轉(zhuǎn)化。 

一般情況下,,光催化CO2還原反應(yīng)主要在氣相或液相中進(jìn)行[1],。 

液相反應(yīng)體系是在CO2的飽和溶液中發(fā)生,此時(shí)光催化劑均勻分散在溶液中,。 

氣相反應(yīng)體系是光催化劑被固定在基底支架上,,CO2和水蒸氣的混合氣直接與光催化劑進(jìn)行反應(yīng),如圖1所示[2],。

氣相和液相光催化CO2還原反應(yīng)模型對(duì)比.jpg

圖1. 氣相和液相光催化CO2還原反應(yīng)模型對(duì)比[2].

在液相反應(yīng)體系中,,由于分散在溶液中的固體催化劑始終處于攪拌狀態(tài),電荷傳遞效率和傳熱效率更高[3, 4],但液相反應(yīng)體系中,,CO2在H2O中有限的溶解度和擴(kuò)散系數(shù)會(huì)限制光催化CO2還原反應(yīng)的傳質(zhì)效率[5],。 

在25℃,101.325 kPa反應(yīng)條件下,,CO2在H2O中的溶解度小于0.033 mol·L-1,,減弱了CO2分子從氣相向光催化劑表面的擴(kuò)散作用[6]。 

相比于中性和酸性條件,,CO2在堿性條件下的溶解度更高[1],,可以通過(guò)提高溶液pH值提高CO2的溶解度,也可以向H2O中加入乙腈(ACN)[7],、乙酸乙酯(EAA)[8]等有機(jī)溶劑以促進(jìn)CO2的溶解,。 

為了解決上述問(wèn)題,研究人員提出了在氣相中進(jìn)行光催化CO2還原反應(yīng),。相比于液相反應(yīng),,氣相反應(yīng)不受犧牲劑、光敏劑,、溶劑等因素的影響,,是一種比較簡(jiǎn)單的反應(yīng)系統(tǒng)。 

CO2在氣相中的擴(kuò)散系數(shù)約為0.1 cm2·s-1,,比在液相中的擴(kuò)散系數(shù)大約高四個(gè)數(shù)量級(jí)[9, 10],,因此在氣相反應(yīng)中,CO2與光催化劑間的傳質(zhì)效率更高,。 

氣相光催化CO2還原反應(yīng)的另一優(yōu)勢(shì)在于可有效抑制析氫反應(yīng)[2, 11],。由于將H2O還原為H2在熱力學(xué)和動(dòng)力學(xué)方面上更有利,在液相反應(yīng)中進(jìn)行的光催化CO2還原反應(yīng)有可能會(huì)誘發(fā)析氫反應(yīng),,降低CO2的轉(zhuǎn)化率[1, 6],。而氣相反應(yīng)中的光催化CO2還原反應(yīng)可以有效解決這一問(wèn)題。 

目前光催化CO2還原反應(yīng)中的氣相反應(yīng)主要分為兩種方式,,一種是將光催化劑涂覆于基材上,,形成薄膜,具有一定濕度的CO2從薄膜上層流過(guò),,如圖2(a)所示,;另一種是固定床式氣相反應(yīng),具有一定濕度的CO2直接從光催化劑床層穿過(guò),,如圖2(b)所示,。相比于上述第一種方式,固定床式的傳質(zhì)作用更加充分,,有助于提高光催化CO2轉(zhuǎn)化率,。

薄膜氣相反應(yīng)模式(a)和固定床氣相反應(yīng)模式(b).jpg

圖2. (a)薄膜氣相反應(yīng)模式和(b)固定床氣相反應(yīng)模式.

為滿(mǎn)足氣相光催化CO2還原反應(yīng)需求,,泊菲萊科技有限公司推出了在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器,該反應(yīng)器主要適配于我司Labsolar-6A全玻璃自動(dòng)在線(xiàn)微量氣體分析系統(tǒng)(以下簡(jiǎn)稱(chēng)Labsolar-6A系統(tǒng)),,如圖3所示,。 

在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器有別于被動(dòng)式擴(kuò)散,氣固相反應(yīng)器采用氣體“穿透”式方案,,結(jié)合Labsolar-6A系統(tǒng)中的磁驅(qū)柱塞泵,,使CO2與催化劑充分接觸,提高傳質(zhì)效率,,提升反應(yīng)轉(zhuǎn)化率,。

 

Labsolar-6A系統(tǒng)搭載在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器現(xiàn)場(chǎng)實(shí)物圖(湖南大學(xué)).jpg

圖3. Labsolar-6A系統(tǒng)搭載在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器現(xiàn)場(chǎng)實(shí)物圖(湖南大學(xué))[12].

除了光催化CO2還原反應(yīng)之外,在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器還適用于光熱催化CO2還原反應(yīng),。反應(yīng)器設(shè)有專(zhuān)用的原位紅外測(cè)溫口,,非接觸式實(shí)時(shí)測(cè)量催化劑表面溫度并記錄,同時(shí)配有恒溫夾套,,最大程度降低熱耗散,,如圖4所示。

Labsolar-6A系統(tǒng)搭載在線(xiàn)氣固相光催化反應(yīng)器現(xiàn)場(chǎng)實(shí)物圖.png

圖4. Labsolar-6A系統(tǒng)搭載在線(xiàn)氣固相光催化反應(yīng)器現(xiàn)場(chǎng)實(shí)物圖.

在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器基本參數(shù): 

  • 反應(yīng)器材質(zhì):反應(yīng)器為高硼硅玻璃,,光窗為石英玻璃,;

  • 粉末催化劑放置方式:平鋪于反應(yīng)器自帶的石英濾膜表面;

  • 反應(yīng)器容積:總?cè)莘e(帶懸臂):118 mL,;柱形部分容積:96 mL; 

  • 反應(yīng)器尺寸:法蘭外徑60 mm,,總高度約200 mm,; 

  • 溫度測(cè)量范圍:0~600℃; 

  • 測(cè)量精度:0.1℃,。

在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器及其配附件.png

圖5.在線(xiàn)測(cè)溫氣固相光催化反應(yīng)器及其配附件.

 注:串聯(lián)催化反應(yīng)講解部分是筆者根據(jù)參考文獻(xiàn)進(jìn)行翻譯和匯總,,筆者水平有限,如有錯(cuò)誤,,請(qǐng)大家指正,!

參考文獻(xiàn)

[1]Muringa Kandy Mufeedah*, Rajeev K Anjana, Sankaralingam Muniyandi*, Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide[J]. Sustainable Energy Fuels, 2021, 5, 12. 

[2]Wang Hai-Ning, Li Shun-Li*, Lan Ya-Qian*, et. al., Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode[J]. Coordination Chemistry Reviews, 2021, 438, 213906.

[3]Fu Junwei, Yu Jiaguo*, Liu Min*, et. al., Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32, 222-243.

[4]Ola Oluwafunmilola*, Maroto-Valer M.Mercedes, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.

[5]Liu Bi-Jin, Torimoto Tsukasa, Yoneyama Hiroshi*, et. al., Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 235-238.

[6]Kong Tingting, Jiang Yawen, Xiong Yujie*, Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation?[J]. Chemical Society Reviews, 2020, 49, 6579-6591.

[7]Huang Ning-Yu, He Hai, Liao Pei-Qin*, et. al. Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO[J]. Journal of the American Chemical Society, 2021, 143, 17424-17430.

[8]Wang Ji-Chong, Wang Jin*, Li Zhengquan*, et. al., Surface defect engineering of CsPbBr3 nanocrystals for high efficient photocatalytic CO2 reduction[J]. Solar RRL, 2021, 5, 2100154.

[9]Carroll John J., Slupsky John D., Mather Alan E. Mather*, The solubility of carbon dioxide in water at low pressure[J]. Journal of Physical and Chemical Reference Data, 1991, 20, 1201-1209.

[10]Huang Huiming, Shi Run, Zhang Tierui*, et. al., Triphase photocatalytic CO2 reduction over Silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie International Edition, 2022. DOI: 10.1002/anie.202200802.

[11]Xie Shunji, Zhang Qinghong*, Wang Ye*, et. al. MgO- and Pt-Promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J]. ACS Catalysis, 2014, 4, 3644-3653.

[12]Li Ziyi, Luo Xiao*, Liang Zhiwu*, et. al., Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO2–TiC/g-C3N4 for photocatalytic CO2 reduction via dry reforming of methane[J]. Catalysis Science Technology, 2022. DOI: 10.1039/D2CY00085G.