精品国产乱码一区二区三区99国产成人99久久亚洲综合|91精品国产色综合久久不8亚洲av综合色,|久久香蕉av亚洲中文字幕日本一区|国产精品国产三级国产av玫瑰|中文字幕精品三区|国产精品永久久久久|日本人妻中文字幕乱|日韩精品人妻系列|国产吃瓜黑料|欧美熟妇精品一区二区蜜桃,国产精品久久久久久精品激情文学中文字幕av ,国产69精品久久久久9999人,中文字幕日本人妻国产av巨作麻豆

創(chuàng)見(jiàn)|實(shí)干|卓越
與光同程,,做民族儀器企業(yè)

光解水water-splitting reaction

Labsolar-6A 全玻璃自動(dòng)在線微量氣體分析系統(tǒng)

Labsolar-6a All-glass automatic on-line trace gas analysis system

產(chǎn)品中心:光解水品牌:泊菲萊瀏覽量:60604
Labsolar-6A 全玻璃自動(dòng)在線微量氣體分析系統(tǒng)集成控制程序,,操作簡(jiǎn)單方便,,強(qiáng)大的兼容性,,可通過(guò)更換不同的反應(yīng)器實(shí)現(xiàn)光催化,、光熱催化,、電催化,、PEC光電化學(xué)等反應(yīng)的微量氣體檢測(cè),。
  • 產(chǎn)品介紹
  • 應(yīng)用領(lǐng)域
  • 文獻(xiàn)
  • 技術(shù)維護(hù)

關(guān)鍵特征

● 玻璃閥+自動(dòng)執(zhí)行器,,實(shí)現(xiàn)氣密性與效率兼顧的目標(biāo),;

● 高效氣體循環(huán),既有效促進(jìn)反應(yīng)與催化劑之間的傳質(zhì)作用,,又有效避免因產(chǎn)物分子的重吸附作用引發(fā)的副反應(yīng)和逆反應(yīng),,準(zhǔn)確呈現(xiàn)催化劑的本征活性;

● 氣體快速混合,,氣體混勻時(shí)間<10 min,,確保產(chǎn)物檢測(cè)的準(zhǔn)確性;

● 集成控制程序,,操作簡(jiǎn)單方便,,準(zhǔn)確性達(dá)科學(xué)級(jí)水準(zhǔn);

● 強(qiáng)大的兼容性,,可通過(guò)更換不同的反應(yīng)器實(shí)現(xiàn)光催化,、光熱催化,、電催化、PEC光電化學(xué)等反應(yīng)的微量氣體檢測(cè),。

 

應(yīng)用領(lǐng)域

▲特別適用   ●較為適用  ○可以使用

▲ 光催化/光電催化分解水制氫/氧

▲ 光催化/光電催化全分解水

▲ 光催化/光電催化CO2還原

▲ 光催化量子效率測(cè)量

▲ 光熱催化(負(fù)壓常壓體系)

▲ 電催化HER,、OER、CO2RR

 

可搭配多種反應(yīng)器拓展應(yīng)用

 

氣體循環(huán)參數(shù)

氣體混勻時(shí)間:H2,、O2、CH4,、CO混勻時(shí)間<10 min,;

標(biāo)準(zhǔn)曲線線性:H2含量為100 μL~10 mL范圍時(shí),R2>0.9995;

重復(fù)性:同一濃度連續(xù)四次進(jìn)樣,,RSD<3%;

排氣量 :6 mL/次,,負(fù)壓至常壓均能提供優(yōu)異的循環(huán)驅(qū)動(dòng)力;

無(wú)源磁驅(qū)柱塞泵:管路中無(wú)電線接入,無(wú)氫爆風(fēng)險(xiǎn),,不產(chǎn)生電解水析氫干擾,;具有單向閥結(jié)構(gòu),可實(shí)現(xiàn)所有管路的單向循環(huán);

取樣方式:定量環(huán)位于多通玻璃取樣閥,,非色譜取樣;

循環(huán)管路:最窄管路為內(nèi)徑為3 mm,,非小口徑色譜管路,氣體阻力小

外觀結(jié)構(gòu)參數(shù)

反應(yīng)器:可適配光催化反應(yīng)器,、光電催化,、光熱催化反應(yīng)器;可根據(jù)實(shí)際實(shí)驗(yàn)需求定制;

整機(jī)尺寸/mm:490 (L)×520 (W)×740 (H)

金屬防護(hù)箱體:對(duì)輻射可能的氣體泄漏有一定防護(hù)作用

光防護(hù)罩:便攜式光防護(hù)罩,可有效防止光污染

 

系統(tǒng)管路參數(shù)

絕壓真空度:≤1.5 kPa

使用壓力范圍:0 kPa~常壓

閥門(mén)數(shù)量:7

管路體積:65 mL,,系統(tǒng)富集能力強(qiáng)

管路材質(zhì):高硼硅玻璃,,高化學(xué)惰性,無(wú)吸附

閥門(mén)工藝:高硼硅玻璃材質(zhì),,閥塞與閥套采用對(duì)磨精磨工藝

真空脂:進(jìn)口道康寧真空脂,,耐化學(xué)品的侵蝕,低蒸汽壓力,,低揮發(fā)性,,工作溫度:-40℃~200℃

定量環(huán):0.6 mL、2 mL可選,,系統(tǒng)靈敏度可調(diào)

儲(chǔ)氣瓶:150 mL,,適用系統(tǒng)擴(kuò)容和反應(yīng)氣如二氧化碳的存儲(chǔ)

管路控溫:循環(huán)管路及進(jìn)樣管路均可進(jìn)行控溫,最高可控200℃ ,;10段程序控溫,,控溫精度±0.1℃;

冷凝管(球形/蛇形):冷凝充分,,避免水蒸氣進(jìn)入氣相色譜儀和真空泵

冷阱(選配):分離低沸點(diǎn)組分,,延長(zhǎng)真空泵使用壽命,,提高系統(tǒng)真空度

控制單元參數(shù)

軟件模塊:32位控制軟件和4.5寸TFF彩色觸摸屏 ;內(nèi)置儀器方法用于控制玻璃閥動(dòng)作,、氣相色譜儀及真空泵啟停,,操作簡(jiǎn)單;自動(dòng)控制模式下,,可實(shí)時(shí)顯示閥門(mén)位置,,具有安全防護(hù)預(yù)警功能;傳感器自動(dòng)提示更換真空脂,;具有二級(jí)加密調(diào)試程序,,用于設(shè)備調(diào)試、內(nèi)部方法設(shè)定及資深用戶靈活使用,;實(shí)時(shí)顯示系統(tǒng)內(nèi)部反應(yīng)壓力,、環(huán)境溫度等參數(shù);

自動(dòng)取樣閥:高硼硅玻璃材質(zhì),,內(nèi)置定量環(huán) ,;多通復(fù)合取樣閥,減少系統(tǒng)循環(huán)體積 ,;支持手動(dòng),、自動(dòng)、半自動(dòng)操作模式,;

真空泵:系統(tǒng)控制軟件自動(dòng)控制啟停,,間歇式工作,噪音??; 含單向電磁閥,可防止泵油倒吸,;

檢測(cè)參數(shù)

檢測(cè)范圍:H2,、O2、CH4,、CO等多種微量氣體,;

檢出限/μmol:H2:0.05;O2:0.1,;CH4/CO:0.0005,。

代表文獻(xiàn)

華東理工大學(xué)李春忠團(tuán)隊(duì)引用Labsolar-6A光催化反應(yīng)系統(tǒng)

青島科技大學(xué)李鎮(zhèn)江團(tuán)隊(duì)引用Labsolar-6A光催化反應(yīng)系統(tǒng).png

陜西師范大學(xué)蔣加興團(tuán)隊(duì)引用Labsolar-6A光催化反應(yīng)系統(tǒng)

陜西師范大學(xué)劉生忠團(tuán)隊(duì)引用Labsolar-6A光催化反應(yīng)系統(tǒng)

應(yīng)化所王穎團(tuán)隊(duì)引用Labsolar-6A光催化反應(yīng)系統(tǒng)

深圳大學(xué)團(tuán)隊(duì)引用Labsolar-6A全玻璃微量氣體分析系統(tǒng).png

  • 膜光催化
  • 光降解氣體污染物
  • 光熱催化(負(fù)壓常壓體系)
  • PEC光電化學(xué)
  • 光催化量子效率測(cè)量
  • 電化學(xué)
  • 光催化二氧化碳還原
  • 光催化全分解水
  • 光催化分解水制氫/氧
  • [1] Liu Zhihe, Liu Hong. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Applied Materials & Interfaces, 2018, 10: 3699. 
  • [2] You Feifei, Wang Dan. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 Junction. Angewandte Chemie International Edition, 2020, 59: 721. 
  • [3] Z. Jiang, X. Xu, Y. Ma, et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction, Nature, 2020
  • [4] Y. Huang, C. Liu, M. Li, et al., Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics, ACS Catalysis, 2020, 10, 3904-3910. 
  • [5] H. Wang, H. Rong, D. Wang, et al., Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution by Plasmonic Au/CdSe-Cu2O Hierarchical Nanostructures under Visible Light, Small, 2020, 16, 2000426. 
  • [6] Y. Zhu, X. Ma, Y. Xu, et al., Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants, National Science Review, 2020, 7, 652-659. 
  • [7] X. Chen, R. Shi, Q. Chen, et al., Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting, Nano Energy, 2019, 59, 644-650. 
  • [8] Xu Yangsen, Su Chenliang. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon mitride capable of near-infrared photocatalytic H2 production. Advanced Materials, 2021, 33: e2101455. 
  • [9] Zhao Yue, Li Can. A Hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59: 9653. 
  • [10] Cai Mujin, He Le. Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6: 807. 
  • [11] Changzhi Han, Chong Zhang, Jia-Xing Jiang et. al. A Universal Strategy for Boosting Hydrogen Evolution Activity of Polymer Photocatalysts under Visible Light by Inserting a Narrow-Band-Gap Spacer between Donor and A. Advanced. Functional. Materials 2022, 2109423. 
  • [12] Hongjun Dong, Yan Zuo, Mengya Xiao, Tingxu Zhou, Shasha Cheng, Gang Chen, Jingxue Sun, Ming Yan,* and Chunmei Li* , Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces 13 (2021) 56273−56284.
  • [13] Chen, J.; Zhu, X.; Jiang, Z.; Zhang, W.; Ji, H.; Zhu, X.; Song, Y.; Mo, Z.; Li, H.; Xu, H., Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H2 evolution. Inorganic Chemistry Frontiers 2021
  • [14] Cao X, Zhang L, Guo C, et al. Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance [J]. Int J Hydrogen Energ, 2021. https://doi.org/10.1016/j.ijhydene.2021.11.016. 
  • [15] Wang, X., Wang, X., Tian, W. et al. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo–N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution.  Applied Catalysis B: Environmental 303 (2022) 120933. 
  • [16] Zeng, H., Wang, Y., Huang, K., Feng, S., et. al.Interfacial Engineering of TiO2/Ti3C2 MXene/Carbon Nitride Hybrids Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2021, 2102765. 
  • [17] Jun Chen, Si-Jia Wu, Wen-Jun Cui, et al. Nickel clusters accelerating hierarchical zinc indium sulfide nanoflowers for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science 2022, 608, 504-512. 
  • [18] Xu C, Li D, Liu X, et al. Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis. Chemical Engineering Journal, 2021: 132861. 
  • [19] Chengqun Xu*Chengqun Xu, Xiaolu Liu, Dezhi Li, Zeyuan Chen, Jiale Yang, Janjer Huang, and Hui Pan*,Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light,ACS Appl. Mater. Interfaces 2021, 13, 17,20114–20124. 
  • [20] Xue Ma, Hefa Cheng*, Facet-Dependent Photocatalytic H2O2 Production of Single Phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 Composites. Chemical Engineering Journal, 429 (2022) 132373. 
  • [21] Wenling Zhao et. al. Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental 2021, 300, 120719.
  • [22] Yuanyuan Li, Shengli Zhu, Xiangchen Kong, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui, ZIF-67 Derived Co@NC/g-C3N4 as a Photocatalyst for Enhanced Water Splitting H2 Evolution. Environmental Research. 2021, 197: 111002. 
  • [23] Yonggang Lei, Xingwang Wu, Shuhui Li, Jianying Huang, Kim Hoong Ng, YuekunLai*. Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 2021, 322, 129018. 
  • [24] W. Zhou, S. Lu, X. Chen, Anionic donor-acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction: high efficiency and excellent stability for co-catalyst-free photocatalytic hydrogen evolution, Journal of Colloid and Interface Science (2021)
  • [25] Zhang, Zhenzong, Yuxin Cao, Fenghao Zhang, et. al. Tungsten Oxide Quantum Dots Deposited onto Ultrathin CdIn2S4 Nanosheets for Efficient S-Scheme Photocatalytic CO2 Reduction Via Cascade Charge Transfer." Chemical Engineering Journal 2022, 428, 131218. 
  • [26] Sihui Xiang, Chong Zhang, Jiaxing Jiang et. al. Structure evolution of thiophene-containing conjugated polymer photocatalysts for high-efficiency photocatalytic hydrogen production. Science China Materals 2021.
  • [27] Mo-O-Bi Bonds as Interfacial Electron Transport Bridges to Fuel CO2 Photoreduction Via In-Situ Reconstruction of Black Bi2MoO6/BiO2-x Heterojunction
  • [28] Yu-Bo Hu, Yu-Xiang Liu, Jun Wu, Yu-Da Li, Jia-Xing Jiang, Feng Wang, A Case Study on a Soluble Dibenzothiophene-S,S-dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production:The Film versus the Bulk Material, ACS Materials & Interfaces, 2021, 13, 36, 42753-42762.
  • [29] Hanbo Yu, Jinhui Huang, Longbo Jiang et. al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120618.
  • [30] Yonggang Lei, Yingzhen Zhang, Zengxing Li, Shen Xu, Jianying Huang, Kim Hoong Ng, Yuekun Lai*. Molybdenum sulfde cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal 2021, 425, 131478.
  • [31] Wang, X., Wang, X., Huang, J. et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat .Commun .12, 4112 (2021).
  • [32] Bocheng Qiu, Cheng Lian, and Jinlong Zhang et. al. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.
  • [33] Chi Ma, Jingjing Wei, Kainian Jiang et. al. Self-assembled micro-flowers of ultrathin Au/BiOCOOH nanosheets photocatalytic degradation of tetracycline hydrochloride and reduction of CO2. Chemosphere 2021, 283, 131228.
  • [34] Chunmei Li, Huihui Wu, Daqiang Zhu, Tingxu Zhou, MingYan, Gang Chen, Jingxue Sun, Gang Dai, Fei Ge, Hongjun Dong*, High-efficientcharge separation driven directionally by pyridine rings grafted on carbonnitride edge for boosting photocatalytic hydrogen evolution, Applied Catalysis B: Environmental 297 (2021) 120433.
  • [35] Hongqiang Jin, Yu Yu, Qikai Shen et. al. Directly Synthesis of 1T-phase MoS2 Nanosheets with Abundance Sulfur-Vacancies through (CH3)4N+ Cations-Intercalation for Hydrogen Evolution. J. Mater. Chem. A, 2021, Accepted Manuscript.
  • [36] Zhao H, Yu X, Li C F, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64: 201-208.
  • [37] Erhuan Zhang, Jia Liu, Jiatao Zhang et. al.Visually Resolving the Direct Z-Scheme Heterojunction in CdS@ZnIn2S4 Hollow Cubes for Photocatalytic Evolution of H2 and H2O2 from Pure Water. Applied Catalysis B: Environmental. 293 (2021) 120213.
  • [38] Guangbo Wang, Yan Geng, Yubin Dong et. al. Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications 2021, doi.org/10.1039/D1CC00854D.
  • [39] Kou M, Liu W, Wang Y, et al. Photocatalytic  CO2 Conversion Over Single-atom MoN2 Sites of Covalent Organic Framework. Applied Catalysis B: Environmental, 2021, 291, 120146.
  • [40] Heng Yang, Chao Yang, Nannan Zhang, Kaili Mo, Qin Li, Kangle Lv*, Jiajie Fan, Lili Wen*, Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods. Applied Catalysis B: Environmental, 2021, 285, 119801. 
  • [41] Chao Peng, Xi Xie, Wenkang Xu et. al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal 2021, https://doi.org/10.1016/j.cej.2021.128766
  • [42] Fengyu Tian,Honglei Zhang,,Shuai Liu,,TaoWu,Jiahui Yu,,Dihua Wang,,Xianbo Jin,,Chuang Peng*,Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Appl. Catal. B: Environ. 2020. https://doi.org/10.1016/j.apcatb.2020.119834
  • [43] Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4,,Hao Wu,,Xin Ying Kong,Xiaoming Wen,,Siang-Piao Chai,,Emma C. Lovell,Junwang Tang,,Yun Hau Ng
  • [44] JunLi,BaojingHuang,QiangGuo,ShengGuo,ZhikunPeng,JinLiu,QingyongTina,YongpengYang,QunXu,ZhongyiLiu,BinLiu,Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction,,Applied Catalysis B: Environmental,2021, 119733
  • [45] Dr. Junqing Yan ,,Dr. Yujin Ji  ,Dr. Munkhbayar Batmunkh  ,Dr. Pengfei An  ,Dr. Jing Zhang  ,Yang Fu  ,Prof. Baohua Jia  ,Prof. Youyong Li  ,Prof. Shengzhong Liu  ,Prof. Jinhua Ye  ,Prof. Tianyi Ma,Breaking Platinum Nanoparticles to Single‐Atomic Pt‐C4 Co‐catalysts for Enhanced Solar‐to‐Hydrogen Conversion, Angewandte Chemie-International Edition
  • [46] Ke Guo, Xiaoli Zhu, Lianlian Peng, Yanghe Fu*, Rui Ma, Xinqing Lu, Fumin Zhang, Weidong Zhu*, Maohong Fan*, Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal 2021, 405, 127011
  • [47]  L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution, Chemical Engineering Journal 405 (2021) 127028.
  • [48] Yunxiang Li,shengyao Wang,Xu-sheng Wang,Yu He,Qi Wang,Yingbo Li,Mengli Li,Gaoliang Yang,Jundong Yi,Huiwen Lin,Dekang Huang,Lan Li,Hao Chen,and Jinhua Ye. Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO2 Photoreduction. Journal of the American Chemical Society
  • [49] Changfa Guo, Lei Li, Fang Chen, Jiqiang Ning, Yijun Zhong, Yong Hu,One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water, Journal of Colloid and Interface Science 2021, 596, 431-441.
  • [50] Wang X, Wang X, et al. nterfacial engineering improved internal electric field contributing to direct Z-scheme-dominated mechanism over CdSe/SL-ZnIn2S4/MoSe2 heterojunction for efficient photocatalytic hydrogen. Chemical Engineering Journal 431 (2022) 134000
  • [51] X. Zhan, Z. Fang, B. Li, H. Zhang, L. Xu, H. Hou, W. Yang, Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production, J. Mater. Chem. A. 2021, 9, 27084-27094.
  • [52] Xingwang Zhu,Xingwang Zhu, Guli Zhou, Jianjian Yi, Penghui Ding, Jinman Yang, Kang Zhong, Yanhua Song*, Yingjie Hua, Xianglin Zhu, Junjie Yuan*, Yuanbin She, Huaming Li, and Hui Xu*,Accelerated Photoreduction of CO2 to CO over a Stable Heterostructure with a Seamless Interface,ACS Appl. Mater. Interfaces 2021, 13, 33, 39523–39532.
  • [53] Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared-photocatalytic H2 production, Advanced Materials, 2021, DOI: 10.1002/adma.202101455.
  • [54] Sheng, Y., Li, W., Zhu, Y., & Zhang, L. (2021). Ultrathin Perylene Imide Nanosheet with Fast Charge Transfer Enhances Photocatalytic Performance. Applied Catalysis B: Environmental, 120585.
  • [55] Xingwang Zhu,Yitao Cao,Yanhua Song,Jinman Yang,Xiaojie She,Zhao Mo,Yuanbin She,Qing Yu,Xianglin Zhu,Junjie Yuan,Huaming Li,Hui Xu,Unique Dual-Sites Boosting Overall CO2 Photoconversion by Hierarchical Electron Harvesters,Small, 2021,2103796
  • [56] Bin Wang, Junze Zhao, Hailong Chen, Yu-Xiang Weng, Hua Tang, Ziran Chen, Wenshuai Zhu, Yuanbin She, Jiexiang Xia, Huaming Li, Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction, Applied Catalysis B: Environmental 293 (2021) 120182.
  • [57] Lei Li, Changfa Guo, Jiqiang Ning, Yijun Zhong, Deli Chen and Yong Hu, Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient ifunctional photocatalyst for CO2 conversion and water oxidation, Applied Catalysis B: Environmental.
  • [58] XupengZong,LijuanNiu,WenshuaiJiang,YanminYu,LiAn,DanQu,XiayanWang,ZaichengSun,Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation,Applied Catalysis B: Environmental,2021, 120099
  • [59] Heng Zhao, Jing Liu, Chao-Fan Li, Xu Zhang, Yu Li,* Zhi-Yi Hu, Bei Li,* Zhangxin Chen, Jinguang Hu,* and Bao-Lian Su*,Meso-Microporous Nanosheet-Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production,,Advanced Functional Materials,10.1002/adfm.202112831
  • [60] Z. Li, Y. Mao, Y.Huang, D. Wei, M. Chen, Y. Huang, B. Jin, X. Luo and Z. Liang, Catal. Sci. Technol., 2022, DOI:10.1039/D2CY00085G.
  • [61] Weixin Huang, Zhipeng Li, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li,,Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production,Journal of Materials Science & Technology 120(2022)89-98
  • [62] Haiyang Wang,Ranran Niu, Jianhui Liu, Sheng Guo, Yongpeng Yang, Zhongyi Liu, and Jun Li,,Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p-n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling,,Nano Res., 10.1007/s12274-022-4329-z
  • [63] Xiaodong Wan , Yuying Gao , Mesfin Eshete , Min Hu , Rongrong Pan, Hongzhi Wang , Lizhen Liu, Jia Liu , Jun Jiang , Sergio Brovelli, Jiatao Zhang ,Simultaneous harnessing of hot electrons and hot holes achieved via n-metal-p Janus plasmonic heteronanocrystals,Nano Energy 98 (2022) 107217
  • [64] Yu Deng, Chuan Wan, Chao Li, Yongye Wang, Xiaoyang Mu, Wei Liu, Yingping Huang,Po Keung Wong, and Liqun Ye,,Synergy Effect between Facet and Zero-Valent Copper for Selectivity Photocatalytic Methane Formation from CO2,,ACS Catal. 2022, 12, 4526−4533
  • [65] Fengjie Chen , Anen He , Yarui Wang, Wanchao Yu, Haoze Chen , Fanglan Geng , Zhunjie Li , Zhen Zhou , Yong Liang , Jianjie Fu , Lixia Zhao , Yawei Wang ,Efficient photodegradation of PFOA using spherical BiOBr modified TiO2 via hole-remained oxidation mechanism,Chemosphere 298 (2022) 134176
  • [66] Tingxu Zhou , Pingfan Zhang , Daqiang Zhu , Shasha Cheng , Hongjun Dong , Yun Wang , Guangbo Che , Yaling Niu , Ming Yan , Chunmei Li ,Synergistic effect triggered by skeleton delocalization and edge induction of carbon nitride expedites photocatalytic hydrogen evolution,,Chemical Engineering Journal 442 (2022) 136190
  • [67] Xue, X., Lu, C., Luo, M. et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting. Sci. China Mater. (2022). 
  • [68] Shasha Cheng, Nan Su, Pingfan Zhang, Yuhai Fang, Jilong Wang, Xiangtong Zhou,Hongjun Dong, Chunmei Li, Coupling effect of (SCN)x nanoribbons on PCN nanosheets in the metal-free 2D/1D Van der Waals heterojunction for boosting photocatalytic hydrogen evolution from water splitting, Separation and Purification Technology 307 (2023) 122796.
  • [69] Taotao Han, Mingwei Luo, Yuqi Liu, Chunhui Lu, Yanqing Ge, Xinyi Xue, Wen Dong, Yuanyuan Huang, Yixuan Zhou, Xinlong Xu. Sb2S3/Sb2Se3 heterojunction for high-performance photodetection and hydrogen production. Journal of Colloid and Interface Science. 628 (2022) 886-895. 
  • [70] Hui Li, Caikun Cheng, Zhijie Yang & Jingjing Wei*. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nature Communications, 2022, 13, 6466.
相關(guān)產(chǎn)品推薦