精品国产乱码一区二区三区99国产成人99久久亚洲综合|91精品国产色综合久久不8亚洲av综合色,|久久香蕉av亚洲中文字幕日本一区|国产精品国产三级国产av玫瑰|中文字幕精品三区|国产精品永久久久久|日本人妻中文字幕乱|日韩精品人妻系列|国产吃瓜黑料|欧美熟妇精品一区二区蜜桃,国产精品久久久久久精品激情文学中文字幕av ,国产69精品久久久久9999人,中文字幕日本人妻国产av巨作麻豆

創(chuàng)見|實干|卓越
與光同程,,做民族儀器企業(yè)

光解水water-splitting reaction

Labsolar-IIIAG 在線光催化分析系統(tǒng)

Labsolar-IIIAG On-line photocatalytic analysis system

產(chǎn)品中心:光解水品牌:泊菲萊瀏覽量:1618
Labsolar-IIIAG 在線光催化分析系統(tǒng)全玻璃材質(zhì),,從根本上杜絕金屬吸附對實驗結(jié)果造成的誤差,;磁力循環(huán)氣泵,,系統(tǒng)中無電線接入,,無氫爆風險,,不產(chǎn)生電解水析氫干擾,。
  • 產(chǎn)品介紹
  • 應用領(lǐng)域
  • 文獻
  • 技術(shù)維護

關(guān)鍵特征

● 經(jīng)典的結(jié)構(gòu)設計,,眾多的使用客戶,,超高的性價比,;

● 全玻璃材質(zhì),從根本上杜絕金屬吸附對實驗結(jié)果造成的誤差,;

● 雙七通取樣結(jié)構(gòu),,杜絕載氣誤抽;

● 磁力循環(huán)氣泵,,系統(tǒng)中無電線接入,,無氫爆風險,不產(chǎn)生電解水析氫干擾,。

 

應用領(lǐng)域

▲特別適用   ●較為適用  ○可以使用

▲光催化/光電催化分解水制氫/氧

▲光催化/光電催化全分解水

▲光催化/光電催化CO2還原

▲光催化量子效率測量

 

氣體循環(huán)參數(shù)

● 標準曲線線性:H2含量為100 μL~10 mL范圍時,,R2>0.999;

● 重復性:同一濃度連續(xù)四次進樣,RSD<3%;

● 無源磁力高速循環(huán)系統(tǒng):驅(qū)動轉(zhuǎn)速不低于4000 r/min,,循環(huán)動力強勁 ,;管路中無電線接入,無氫爆風險,,不產(chǎn)生電解水析氫干擾,;

● 取樣方式:手動在線取樣,帶定量環(huán)多通取進樣閥門為高硼硅玻璃材質(zhì),,位于系統(tǒng)而非色譜,;

● 循環(huán)管路:最窄管路為內(nèi)徑為3 mm,,非小口徑色譜管路,氣體阻力??;

系統(tǒng)管路參數(shù)

● 絕壓真空度:≤0.1 MPa;

● 使用壓力范圍:0 kPa~常壓,;

● 氣密性:相對壓力變化≤1 kPa/24 h,;

● 管路材質(zhì):高硼硅玻璃,高化學惰性,,無吸附,;

● 閥門工藝:高硼硅玻璃材質(zhì),閥塞與閥套采用對磨精磨工藝,;

● 閥門數(shù)量:13,;

● 真空脂:進口道康寧真空脂,耐化學品的侵蝕,,低蒸汽壓力,,低揮發(fā)性,工作溫度:-40℃~200℃,;

● 管路體積:150 mL,;

● 定量環(huán):1.5 mL;

● 儲氣瓶:250 mL,,適用系統(tǒng)擴容和反應氣如二氧化碳的存儲,;

● 冷凝管:球形冷凝管,避免水蒸氣進入氣相色譜儀和真空泵,;

● 冷阱:分離低沸點組分,,延長真空泵使用壽命,提高系統(tǒng)真空度,;

外觀結(jié)構(gòu)及其他外設

● 反應器:可適配光催化反應器,、光電催化反應器 ;可根據(jù)實際實驗需求定制,;

● 整機尺寸/mm:650 (L)×370 (W)×730 (H),;

● 開放式設計:高度可根據(jù)實驗需求進行調(diào)節(jié);

● 光電隔離:輸入輸出部分均有光電隔離,,抗干擾能力強,;

● 真空泵:單級旋片式真空泵,抽速≥6L/s,;

 

代表文獻

大連化物所李燦院士團隊引用Labsolar-IIIAG光催化反應系統(tǒng)

哈爾濱工業(yè)大學陳剛團隊引用IIIAG系統(tǒng)

  • [1] P. Li, G. Luo, S. Zhu, et al., Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction, Applied Catalysis B: Environmental, 2020, 274, 119115.
  • [2] Q. Zhu, B. Qiu, M. Du, et al., Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C3N4 Nanosheets for Photocatalytic Water Reduction, ACS Sustainable Chemistry & Engineering, 2020, 8, 7497-7502.
  • [3] G. Huang, Z. Xiao, W. Zhen, et al., Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: An energy recovering water purification technology, Water Res, 2020, 175, 115684.
  • [4] Guo W, Qin Y, Liu C, et al. Unveiling the intermediates/pathways towards photocatalytic dechlorination of 3,3′,4,4′-trtrachlorobiphenyl over Pd /TiO2(B) nanosheets[J]. Applied Catalysis B Environmental, 2021, 298:120526.
  • [5] M. Li, J.X. Sun, G. Chen, S.Y. Yao, B.W. Cong, Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance, Appl. Catal. B: Environ. 2022, 31, 120792-120804.  httpsdoi.org10.1016j.apcatb.2021.120792.pdf.
  • [6] Z. Liu, J. Zhang, Y. Wan, J. Chen, Y. Zhou, J. Zhang, G. Wang, R. Wang, Donor-Acceptor structural polymeric carbon nitride with in-plane electric field accelerating charge separation for efficient photocatalytic hydrogen evolution, Chemical Engineering Journal 430 (2022) 132725.
  • [7] Yu-Qin Xing, Long Chen and Shi-Yong Liu et. al. In situ C-H activation-derived polymer@TiO2 p-n heterojunction for photocatalytic hydrogen evolution. Sustainable Energy Fuels, 2021, Advance Article.
  • [8] pH-induced hydrothermal synthesis of Bi2WO6 nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity, Journal of Colloid and Interface Science 602 (2021) 868-879.
  • [9] YukeShen,DekangLi,YuyingDang,JiaweiZhang,WeiWang,BaojunMa.A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation.Applied Surface Science,2021, 150432.
  • [10] J. Cai, A. Cao, Z. Wang, S. Lu, Z. Jiang, X.-Y. Dong, X. Li, S.-Q. Zang, Surface oxygen vacancies promoted Pt redispersion to single-atom for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2021, DOI: 10.1039/D1TA01400E.
  • [11] Enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. Journal of Colloid and Interface Science, 2021, 598, 14-23.
  • [12] Zhu L, Wu Y, Wu S, et al. Tuning the Active Sites of Atomically Thin Defective Bi12O17Cl2 Via Incorporation of Subnanometer Clusters[J]. Acs Appl. Mater. Interfaces, 2021.
  • [13]  W. Li, X. Wang, M. Li, S. He, Q. Ma, X. Wang. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl. Catal. B-Environ. 268 (2020) 118384.
  • [14]  Yanbin Huang, Jun Liu, Chao Zhao et. al. Facile Synthesis of Defect-Modi?ed Thin-Layered and Porous g?C3N4 with Synergetic Improvement for Photocatalytic H2 Production. ACS Appl. Mater. Interfaces, 2020, 12, 52603−52614.
  • [15]  Bin Zeng,Shengyang Wang,Yuying Gao,Guanna Li,Wenming Tian,Jittima Meeprasert,Hao Li,Huichen Xie,Fengtao Fan,Rengui Li,Can Li,Interfacial Modulation with Aluminum Oxide for Efficient Plasmon-Induced Water Oxidation,Advanced Functional Materials,2020 05688.
  • [16]  Zhi-Rong Tan, Yu-Qin Xing,Jing-Zhao Cheng, Guang Zhang, Zhao-Qi Shen, Yu-Jie Zhang, Guangfu Liao,  Long Chen  and Shi-Yong Liu,,EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production,Chem. Sci., 2022, 13, 1725
相關(guān)產(chǎn)品推薦